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Einstein–Podolsky–Rosen spin correlations in the framework of nonrelativistic quantum
mechanics for moving observers are calculated. The measurements are performed in
bounded regions of space (detectors), not necessarily simultaneously. The resulting
correlation function depends not only on the directions of spin measurements but also
on the relative velocity of the observers.
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1. INTRODUCTION

The Einstein–Podolsky–Rosen (EPR) paradox (Bohm, 1951; Einsteinet al.,
1935) and its consequences, like the violation of Bell-type inequalities (see e.g.,
Apostolakiset al., 1998; Aspectet al., 1981, 1982; Bell, 1964; Tittelet al., 1998,
1999; Weihset al., 1998), are strictly connected with recent developments in the
area of quantum mechanics.

In this paper we analyze the EPR spin correlations in the framework of non-
relativistic quantum mechanics. Let us remind briefly how the standard formula for
the correlation function is obtained (see e.g., Peres, 1995). We consider a source
which emits two spin 1/2 particles in opposite directions. Two observers, sayA
andB, measure the spin component of the particle along given directions,a and
b, respectively. If we assume that the particles are in the singlet state

|9〉 = 1√
2

(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉), (1)

then the correlation function reads

C(a, b) = 〈9|a · σ ⊗ b · σ|9〉 = −a · b = − cosθ , (2)
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wherea, b—unit vectors,σ = (σ1, σ2, σ3)—Pauli spin matrices, andθ denotes
the angle between vectorsa andb.

Notice that in the above considerations one neglects the space degrees of
freedom as well as the size of the detectors used by the observersA andB. Thus
the main goal of our analysis is to fill this gap and calculate the correlation function
taking into account:

• the space part of the wave function
• the finite size of the detectors
• the relative motion of the observers
• the fact that measurements can be performed at different times.

For simplicity we consider only the case of distinguishable particles. The case
of identical particles is considered by Cabanet al. (in press). The calculation of
the correlation function in the Lorentz covariant quantum mechanics is considered
by Rembieliński and Smoli´nski (2002).

2. GALILEAN GROUP AND ITS UNITARY REPRESENTATIONS

Let us begin with a summary of the main facts concerning Galilean group
and its unitary ray representations which we will need to take into account the
relative motion of the observersA andB. LetH denote one-particle Hilbert space
of states. The basic observables:X̂—position,P̂—momentum,̂S—spin act in the
spaceH. Their canonical commutation relations are the following:

[ X̂i , X̂ j ] = 0, [P̂i , P̂j ] = 0, (3)

[ X̂i , P̂j ] = i δi j , [ X̂i , Ŝj ] = 0, (4)

[ P̂i , Ŝj ] = 0, [Ŝi , Ŝj ] = i εi jk Ŝk. (5)

The classical Galilean transformations have the form

x′ = Rx+ a− vt, t ′ = t + τ (6)

wherev denotes the velocity of the frame (x′, t ′) with respect to the frame (x, t).
In the sequel we adopt the passive point of view. Now we assume thatH is the
carrier space of a unitary ray representation of the Galilean group. In the Hilbert
space

– rotations are generated by the total angular momentumĴ,
– translations are generated by the momentumP̂,
– time translations are generated by the HamiltonianĤ ,
– Galilean boosts are generated byĜ.



P1: FLT

International Journal of Theoretical Physics [ijtp] Pp903-ijtp-468235 August 19, 2003 22:11 Style file version May 30th, 2002

Spin Correlations in Nonrelativistic Quantum Mechanics 1047

The generators of rotations and Galilean boosts can be expressed by basic observ-
ables:

Ĵ = Ŝ+ X̂ × P̂, Ĝ = tP̂− MX̂, (7)

whereM is mass of the system.
In momentum representation the basis vectors of the carrier space of a par-

ticular irreducible unitary ray representation of Galilean group in the Schr¨odinger
picture we will denote by|k, m〉t , wherek is an eigenvalue of momentum operator
P̂, m—a spin component along thez axis. We will denote the elements of the
unitary representation of the Galilean group as follows:

U (a) = ei aP̂, U (v) = ei vĜ, (8)

U (R) = eiϕĴ, U (τ ) = ei τ Ĥ . (9)

The position operator̂X fulfills the eigenequation:

X̂|x, m〉t = x|x, m〉t , (10)

where

|x, m〉t = 1

(2π )3/2

∫
d3k e−ikx|k, m〉t . (11)

The translations, rotations, and boosts act on vectors|x, m〉t as follows:

U (a)|x, m〉t = |x− a, m〉t , (12)

U (R)|x, m〉t = Ds(R)m′m|Rx, m′〉t , (13)

Ut (v)|x, m〉t = ei M ( tv2

2 −vx)|x− tv, m〉t . (14)

In discussion of EPR-type experiments it is convenient to use position basis in
which vectors are numbered by spin component along arbitrary axis (not necessary
z axis). Observablen · Ŝ measures spin component along axis in the direction
n. Sincen · Ŝ commutes withX̂ these two observables possess common set of
eigenvectors. We denote them by|x, n, λ〉 and

(n · Ŝ)|x, n, λ〉 = (n ·Σ)σλ|x, n, σ 〉 = λ|x, n, λ〉, (15)

X̂|x, n, λ〉 = x|x, n, λ〉, (16)

whereλ = −s,−s+ 1, . . . , s andΣ denotes the generators of the representation
Ds. Writting n = (sinθ cosϕ, sinθ sinϕ, cosθ ) we get

|x, n, λ〉 = Ds(ei θωΣ)λ′λ|x, λ′〉i , (17)

whereω = (sinϕ,− cosϕ, 0). Therefore taking into account (12)–(17) we get:

U (a)|x, n, λ〉 = |x− a, n, λ〉, (18)
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U (R)|x, n, λ〉 = Ds(R)λ′λ|Rx, Rn, λ′〉, (19)

Ut (v)|x, n, λ〉 = ei M ( tv2

2 −vx)|x− tv, n, λ〉. (20)

In particular, whens= 1/2 we have∣∣∣∣x, n,
1

2

〉
= cos

θ

2

∣∣∣∣x,
1

2

〉
+ e−iϕ sin

θ

2

∣∣∣∣x,−1

2

〉
, (21)∣∣∣∣x, n,−1

2

〉
= −eiϕ sin

θ

2

∣∣∣∣x,
1

2

〉
+ cos

θ

2

∣∣∣∣x,−1

2

〉
. (22)

3. CORRELATION FUNCTIONS

We consider two spinsparticles,α andβ. The space of states of these particles
isHα ⊗Hβ whereHα andHβ—space of states of the particlesα andβ, respec-
tively. In the spacesHα andHβ we will use bases{|xα, nα, λα〉} and{|xβ , nβ , λβ〉},
respectively. Recall that vector|xα, nα, λα〉 (|xβ , nβ , λβ〉) describes the situation
when the particleα(β) is localized atxα (xβ) and its spin component along the di-
rection determined by a unit vectornα (nβ) is equal toλα (λβ). We want to describe
an EPR-type experiment in which two distant observersA andB measure spin
components of the particles using detectors which occupy some bounded regions
A and B, respectively. Thus the measurement consists of the localization inside
the detector and simultaneous measurement of the spin component. Therefore the
observersA andB measure the observables:

3s
A,a⊗ I , I ⊗3s

B,b, (23)

where the spectral decomposition of3s
Ä,n(Ä = A orÄ = B, n = a or n = b) is

the following

3s
Ä,n =

s∑
λ=−s

λ

(∫
Ä

d3x|x, n, λ〉〈x, n, λ|
)
≡

s∑
λ=−s

λ5
s,λ
Ä,n. (24)

The projectors5s,λ
Ä,n in (24) have the obvious interpretation: When we measure

5
s,λ
Ä,n we get the value 1 if and only if the particle is insideÄ and its spin component

along the directionn is equal toλ.
Calculation of the correlation function can be divided in the folowing steps.

• Preparation of the initial state
We assume that a two-particle stateρ is prepared in a certain inertial frame
of referenceO. Two inertial observers,A andB, move with constant ve-
locities with respect toO. The velocity of the frameO with respect toA
andB we denote byvA andvB, respectively. At timetA the stateρ is given
by ρ(tA).
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• Measurement performed by observerA
For the observerA the density matrixρ(tA) has the form

ρA(tA) = UtA(vA)ρ(tA)U †tA
(vA), (25)

whereUt (v) = Uα
t (v)⊗Uβ

t (v) andUα
t (v) is the unitary operator of pure

Galilean boost. At timetA the observerA measures3s
A,a⊗ I in the state

(25) and as a result of the measurement with selection he receivesλα with
the probability

p(λα) = Tr
[
ρA(tA)

(
5

s,λα
A,a ⊗ I

)]
(26)

The measurement reduces the density matrix (25) to

ρ
λα
A (tA) =

(
5

s,λα
A,a ⊗ I

)
ρA(tA)

(
5

s,λα
A,a ⊗ I

)
Tr
[
ρA(tA)

(
5

s,λα
A,a ⊗ I

)] . (27)

• Free time evolution of the state
The density matrix (27) as seen from the frameO reads

ρλα (tA) = U †tA
(vA)ρλαA (tA)UtA(vA). (28)

Now the stateρλα (tA) evolves from timetA to tB and resulting density
matrix reads

ρλα (tB) = U †(tB − tA)ρλα (tA)U (tB − tA), (29)

whereU (tB − tA) = Uα(tB − tA)⊗Uβ(tB − tA) andU (t)—the time evo-
lution operator.
• Measurement performed by observerB

The density matrix (29) as seen by the observerB has the form

ρ
λα
B (tB) = UtB (vB)ρλα (tB)U †tB

(vB). (30)

At time tB the observerBmeasuresI ⊗3s
B,b in the state (30) and receives

λβ with the probability

p(λβ |λα) = Tr
[
ρ
λα
B (tB)

(
I ⊗5s,λβ

B,b

)]
. (31)

It is conditional probability because the state in whichB performs the mea-
surement has the form (29) only ifA receivesλa in the first measurement.

Correlation function is defined by the following formula

Cα,β(a, b) =
∑
λα ,λβ

λαλβ p(λα, λβ), (32)

wherep(λα, λβ) denotes the probability thatA receivesλα andB receivesλβ .
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We have

p(λα, λβ) = p(λα)p(λβ |λα), (33)

so, taking into account (32), (26), (31), we get

Cαβ(a, b) = Tr
{
ρ(tA)

[
Uα†

tA
(vA)3s

A,aU
α
tA

(vA)
]⊗ [Uβ(tB − tA)Uβ†

tB
(vB)

×3s
B,bUβ

tB
(vB)Uβ†(tB − tA)

]}
. (34)

Now let us take a closer look at the formula (34) in the simplest case. Thus let us
assume that

• p(tA) is a pure state soρ(tA) = |ψ〉〈ψ | where|ψ〉 ∈ Hα ⊗Hβ is normal-
ized,
• both measurements are performed simultaneouslytA = tB = t .

In the position representation|ψ〉 reads

|ψ〉 =
∑

mα ,mβ

∫ ∫
d3xd3yψmαmβ

(x, y)|x, mα〉 ⊗ |y, mβ〉. (35)

Therefore we get

Cαβψ (a, b) =
∫

A
d3x

∫
B

d3y
∑
mα ,mβ
m′α ,m′

β

(a · S)mαm′α (b · S)mβm′β

×ψ∗m′αm′β
(x− vAt, y− vBt)ψmαmβ

(x− vAt, y− vBt). (36)

Now let us apply the formula (36) in the cases= 1/2. We cosider separately
the cases when the state|ψ〉 is a singlet or a triplet.

3.1. Singlet State

For the singlet state we have

ψmαmβ
(x, y) = −ψmβmα

(x, y). (37)

Thus from (36) we receive

Cαβψsinglet
(a, b) = −1

2
cos(θab)

∫
A

d3x
∫

B
d3y|ψsinglet(x− vAt, y− vBt)|2, (38)

whereθab denotes an angle between vectorsa andb, ψsinglet(x, y) ≡ ψ 1
2 ,− 1

2
(x, y)

and the normalization yields∫∫
d3xd3y|ψsinglet(x, y)|2 = 1

2
. (39)
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If we compare (38) with the standard formula (2) we find, that the only difference
is the presence of the factor∫

A
d3x

∫
B

d3y|ψsinglet(x− vAt, y− vBt)|2 (40)

which influences the intensity of the correlations.

3.2. Triplet State

For the triplet state we have

ψmαmβ
(x, y) = ψmβmα

(x, y) (41)

and from (36) we get

Cαβψtriplet
(a, b) = 1

4

∫
A

d3x
∫

B
d3y{(|ψ++|2+ |ψ−−|2) cosθa cosθb

+ (ψ∗++ψ−− ei (ϕa+ϕb) + ψ∗−−ψ++ e−i (ϕa+ϕb)
)

sinθa sinθb

+ (ψ∗++ψ+− − ψ∗+−ψ−−)(cosθa sinθbeiϕb + sinθa cosθb eiϕa)

+ (ψ∗+−ψ++ − ψ∗−−ψ+−)(cosθa sinθb e−iϕb + sinθa cosθb e−iϕa)

− 2ψ∗+−ψ+−(cosθa cosθb − sinθa sinθb cos(ϕa − ϕb))}, (42)

where

ψ++ = ψ 1
2 , 1

2
(x− vAt, y− vBt), (43)

ψ+− = ψ 1
2 ,− 1

2
(x− vAt, y− vBt), (44)

ψ−− = ψ− 1
2 ,− 1

2
(x− vAt, y− vBt), (45)

a= (cosϕa sinθa, sinϕa sinθa, cosθa), (46)

b = (cosϕb sinθb, sinϕb sinθb, cosθb), (47)

and the normalization yields∫∫
d3xd3y

{∣∣∣ψ 1
2 , 1

2
(x, y)

∣∣∣2+ ∣∣∣ψ− 1
2 ,− 1

2
(x, y)

∣∣∣2+ 2
∣∣∣ψ 1

2 ,− 1
2
(x, y)

∣∣∣2} = 1. (48)

Note, that the triplet correlation function (42) depends on velocities of frames in
more nontrivial way than in the singlet case.

4. CONCLUSIONS

In this paper, we have presented the calculation of the spin correlation func-
tions in the EPR type experiments in the framework of nonrelativistic quantum
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mechanics. In comparison to the standard derivation we additionally considered
the space part of the wave function and the relative motion of the observers. We
also took into account the fact that every measurement of the spin component is
connected with the simultaneous localization of the particle inside the detector. In
the most interesting case of the singlet state of two spin 1/2 particles we received,
as one could expect, that the correlation function depends on the vectorsa andb
in the standard way. The only difference is the presence of the factor which influ-
ences the intensity of the correlations. The triplet correlation function depends on
velocities of frames in more nontrivial way than in the singlet case.
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