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Spin Correlations in Nonrelativistic
Quantum Mechanics
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Einstein—Podolsky—Rosen spin correlations in the framework of nonrelativistic quantum
mechanics for moving observers are calculated. The measurements are performed in
bounded regions of space (detectors), not necessarily simultaneously. The resulting
correlation function depends not only on the directions of spin measurements but also
on the relative velocity of the observers.

KEY WORDS: EPR correlations; EPR paradox; correlation function.

1. INTRODUCTION

The Einstein—Podolsky—Rosen (EPR) paradox (Bohm, 1951; Eirettein
1935) and its consequences, like the violation of Bell-type inequalities (see e.g.,
Apostolakiset al,, 1998; Aspecet al,, 1981, 1982; Bell, 1964; Tittedt al,, 1998,
1999; Weihset al, 1998), are strictly connected with recent developments in the
area of quantum mechanics.

In this paper we analyze the EPR spin correlations in the framework of non-
relativistic quantum mechanics. Let us remind briefly how the standard formula for
the correlation function is obtained (see e.g., Peres, 1995). We consider a source
which emits two spin 1/2 particles in opposite directions. Two observersdsay
and B, measure the spin component of the particle along given directosusd
b, respectively. If we assume that the particles are in the singlet state

1
Py = — — 1
(W) ﬁ(IT>®|¢) [ 1), 1)
then the correlation function reads
Clab)y=(Vja-c®b.o|¥)=—-a-b=—-coss, (2)
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wherea, b—unit vectors,o = (o1, 02, 03)—Pauli spin matrices, an@ denotes
the angle between vectoasandb.

Notice that in the above considerations one neglects the space degrees of
freedom as well as the size of the detectors used by the obsehamd /5. Thus
the main goal of our analysis is to fill this gap and calculate the correlation function
taking into account:

the space part of the wave function

the finite size of the detectors

the relative motion of the observers

the fact that measurements can be performed at different times.

For simplicity we consider only the case of distinguishable particles. The case
of identical particles is considered by Cabetral. (in press). The calculation of
the correlation function in the Lorentz covariant quantum mechanics is considered
by Rembieliiski and Smoliski (2002).

2. GALILEAN GROUP AND ITS UNITARY REPRESENTATIONS

Let us begin with a summary of the main facts concerning Galilean group
and its unitary ray representations which we will need to take into account the
relative motion of the observey$ and3. Let denote one-particle Hilbert space
of states. The basic observabl¥s—position,P—momentumS—spin act in the
spaceH. Their canonical commutation relations are the following:

[Xi, X;]=0, [R,P]=0, ®3)
[Xi, Pl =isj, [X,S]1=0, (4)
[A.§5]1=0, [S.S]=iauS (5)

The classical Galilean transformations have the form
X =Rx+a—-vt, t'=t+r7 (6)

wherev denotes the velocity of the framg'(t”) with respect to the framex(t).

In the sequel we adopt the passive point of view. Now we assumétligthe
carrier space of a unitary ray representation of the Galilean group. In the Hilbert
space

rotations are generated by the total angular momewtum
translations are generated by the momeniym

time translations are generated by the Hamiltortign
Galilean boosts are generated®y
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The generators of rotations and Galilean boosts can be expressed by basic observ-
ables:

J=S+XxP, G=tP-MX, @)
whereM is mass of the system.

In momentum representation the basis vectors of the carrier space of a par-
ticular irreducible unitary ray representation of Galilean group in thedithgér
picture we will denote byk, m);, wherek is an eigenvalue of momentum operator
P, m—a spin component along theaxis. We will denote the elements of the
unitary representation of the Galilean group as follows:

U@=¢%® Uuw=¢"s, 8)
UR) =€, U(r)=¢€", 9)
The position operatoX fulfills the eigenequation:
X|X, M) = X|x, M), (10)
where
X, M) = ﬁ/dg’k e |k, m);. (11)
The translations, rotations, and boosts act on ve¢tom), as follows:
U(@)|x, my; = [x —a, m)y, (12)
U (R)|x, M)t = D3(R)nym| Rx, m')y, (13)
UeW)[x, m)e = eMCE"x — tv, my. (14)

In discussion of EPR-type experiments it is convenient to use position basis in
which vectors are numbered by spin component along arbitrary axis (not necessary
z axis). Observable - S measures spin component along axis in the direction

n. Sincen - S commutes withX these two observables possess common set of
eigenvectors. We denote them sy n, 1) and

(n-9x,n, ) = (- E)eslX, N, 0) = A[X, N, A), (15)
X|X, N, &) = X|X, N, A), (16)
wherer = —s, —s+ 1, ..., sandX denotes the generators of the representation
Ds. Writting n = (siné cosg, sind sing, cos) we get
%, 1, &) = DE )%, 1), (17)

wherew = (sing, — cosy, 0). Therefore taking into account (12)—(17) we get:

U(@)|x, n, L) =[x —a, n, A, (18)
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U(R)|X1 n, )\,) = DS(R))\’Xl ny Rna )"/)1 (19)
UW)lx,n, 1) = €05 — ty, n, 4). (20)
In particular, whers = 1/2 we have
1 0| 1 i i O 1

=)= =X, = = |X,—= 21
X, N, 2> 0052 X, 2> +e sm2 X, 2>, (22)

1 - 0| 1 0 1
y Iy =3 )= _el(ﬂ in— ' A A vy T A~/ 22
X, N 2> S|n2x2>+coszx 2> (22)

3. CORRELATION FUNCTIONS

We consider two spiaparticles andg. The space of states of these particles
is H* ® H? whereH* andH?—space of states of the particlesand 8, respec-
tively. In the spaces(* andH” we will use base§Xy, Ny, Ae)} and{|xg, ng, Ag)},
respectively. Recall that vectix,, n,, A,) (IXg, Ng, A5)) describes the situation
when the particle:(B) is localized ak, (xg) and its spin component along the di-
rection determined by a unit vectog (ng) is equal tak, (1). We want to describe
an EPR-type experiment in which two distant observérand 3 measure spin
components of the particles using detectors which occupy some bounded regions
A and B, respectively. Thus the measurement consists of the localization inside
the detector and simultaneous measurement of the spin component. Therefore the
observers4 and5 measure the observables:

A%a® 1, 1 @AY, (23)

where the spectral decomposition®}, (2 = AorQ =B,n=aorn=b)is
the following

Ay, = XS: (/Qd3x|x n, A)(x, n, /\|) Z AT, (24)

A=-S A=—S

The projectorsi'lgfn in (24) have the obvious interpretation: When we measure
Hgf\n we getthe value 1if and only if the particle is insi@and its spin component
along the directiom is equal tox.

Calculation of the correlation function can be divided in the folowing steps.

e Preparation of the initial state
We assume that a two-particle statis prepared in a certain inertial frame
of referenced. Two inertial observers4d and 3, move with constant ve-
locities with respect t@. The velocity of the frame& with respect ta4
and5 we denote by andvg, respectively. At timé, the statep is given

by p(ta).
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e Measurement performed by observér
For the observer the density matrix(ta) has the form

pA(ta) = Uy, (Va) o (ta)U{ (Va), (25)

whereU;(v) = U (V) ® Uﬂ(v) andU{(v) is the unitary operator of pure
Galilean boost. At time, the observem measures\;, , ® | in the state
(25) and as a result of the measurement with selectlon he recgiwveish
the probability

pGa) = Tr [ palta) (M35 © 1) | (26)

The measurement reduces the density matrix (25) to
(H‘Z?g ® | ) pa(ta) (Hi,*a“ ® | )
Trlpat) (M5 @ 1)]

e Free time evolution of the state
The density matrix (27) as seen from the fraéeeads

p*e(ta) = Ul (Va) oy (ta)U, (V). (28)

Now the statep*(ta) evolves from timet, to tg and resulting density
matrix reads

Pl (ta) = (27)

p*(tg) = UT(ts — ta)o™ (ta)U (ts — ta), (29)

whereU (tg — ta) = U%(tg — ta) ® UP(tg — ta) andU (t)—the time evo-
lution operator.

e Measurement performed by obseryer
The density matrix (29) as seen by the obsef¥éias the form

Py (tg) = Uy (Va) o™ (ta)U{, (V). (30)

Attime tg the observeB8 measures ® Aj , in the state (30) and receives
Ag with the probability

PGsl) = Tr [ (ta) (1 © 113 ) - (31)

Itis conditional probability because the state in whitperforms the mea-
surement has the form (29) only.if receives., in the first measurement.

Correlation function is defined by the following formula
c*P@b) =) harpPOuas hp), (32)

M hp

wherep(iy, Ag) denotes the probability thad receivesi, andB receivesi.
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We have
P(tas p) = P(ha) P(As12a), (33)
S0, taking into account (32), (26), (31), we get
c*’ (@ b) = Tr{p(ta)[Ug, (va)AZ U5 (va)] @ U (ts — ta)U' (V)
x Ag UL (ve)UPT (ts — ta)] ). (34)

Now let us take a closer look at the formula (34) in the simplest case. Thus let us
assume that

e p(ta) is a pure state sp(ta) = |v) (| where|y) € H® @ H? is normal-
ized,
e both measurements are performed simultaneduyshy tg =t.

In the position representatigiy) reads

ZEDS / / d*xd%y Yim,m, (X, V)X, Ma) @ Iy, mg). (35)

My, Mg

Therefore we get

¢f@b) = [ % [ &y 3@ 0 Gy
A B My, Mg

m&,m}i
X Yoy, (X = Val, Y = VBU)Ym,m, (X — Vat,y — vat).  (36)

Now let us apply the formula (36) in the case- 1/2. We cosider separately
the cases when the staig) is a singlet or a triplet.

3.1. Singlet State

For the singlet state we have
wrﬂxmﬁ (X! y) = _Wmﬂmu (Xr y) (37)
Thus from (36) we receive
" 1
Clfpgu@ D) = == COSBar) / d®x / A3y |Ysingle(X — Vat, y — Vat)|?,  (38)
A B

whereby, denotes an angle between vectamndb, VsingiedX, ¥) = w%’_%(x, y)
and the normalization yields

1
[ dxeyivsngetx 2 = 5. (39
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If we compare (38) with the standard formula (2) we find, that the only difference
is the presence of the factor

/ d° / 0y [WsingelX — Vat, y — Vat)[? (40)
A B

which influences the intensity of the correlations.

3.2. Triplet State

For the triplet state we have
wmnmﬁ (Xv y) = ¢mﬂma (Xv y) (41)
and from (36) we get

o 1
2 (@ b)=2 | d [ d{([ssl?+ Y- [?) cosba cost
’ 4 /A B

+ (Vi yo_ €Wt oy e ate)) sing, sing,

+ (W Y- — Y- _)(COSHa SiNGE  + Sind, COSOy € #2)

+ (W Yy — ¥y )(COSHa SN €77 + Sind, COSBy €'¢)
— 2y} _r4_(COSHa COSHYL — SiNB, SiNB, COSEPa — ¢b))}, (42)

where
Vi =¥ 1(X—vat,y —vgtb), (43)
Yo =1 _1(X—Vat,y —Vat), (44)
/. =¢7%’7%(x—vAt,y—vBt), (45)
a = (COSy, SiNb,, Sing, Sind,, C0sb,), (46)
b = (cosgy, sinéy, singy, Sinby,, cosHy), 47)

and the normalization yields
3043 2 2 2
//d xdy |ws 0| + vy s +2fv | =1 @8)

Note, that the triplet correlation function (42) depends on velocities of frames in
more nontrivial way than in the singlet case.

4. CONCLUSIONS

In this paper, we have presented the calculation of the spin correlation func-
tions in the EPR type experiments in the framework of nonrelativistic quantum
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mechanics. In comparison to the standard derivation we additionally considered
the space part of the wave function and the relative motion of the observers. We
also took into account the fact that every measurement of the spin component is
connected with the simultaneous localization of the particle inside the detector. In

the most interesting case of the singlet state of two spin 1/2 particles we received,
as one could expect, that the correlation function depends on the va@ndh

in the standard way. The only difference is the presence of the factor which influ-

ences the intensity of the correlations. The triplet correlation function depends on
velocities of frames in more nontrivial way than in the singlet case.
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